Loss-of-Function of Gli3 in Mice Causes Abnormal Frontal Bone Morphology and Premature Synostosis of the Interfrontal Suture
نویسندگان
چکیده
Greig cephalopolysyndactyly syndrome (GCPS) is an autosomal dominant disorder with polydactyly and syndactyly of the limbs and a broad spectrum of craniofacial abnormalities. Craniosynostosis of the metopic suture (interfrontal suture in mice) is an important but rare feature associated with GCPS. GCPS is caused by mutations in the transcription factor GLI3, which regulates Hedgehog signaling. The Gli3 loss-of-function (Gli3(Xt-J/Xt-J)) mouse largely phenocopies the human syndrome with the mice exhibiting polydactyly and several craniofacial abnormalities. Here we show that Gli3(Xt-J/Xt-J) mice exhibit ectopic ossification in the interfrontal suture and in the most severe cases the suture fuses already prior to birth. We show that abnormalities in frontal bones occur early in calvarial development, before the establishment of the interfrontal suture. It provides a model for the metopic suture pathology that can occur in GCPS.
منابع مشابه
Craniosynostosis of Coronal Suture in Twist1+/− Mice Occurs Through Endochondral Ossification Recapitulating the Physiological Closure of Posterior Frontal Suture
Craniosynostosis, the premature closure of cranial suture, is a pathologic condition that affects 1/2000 live births. Saethre-Chotzen syndrome is a genetic condition characterized by craniosynostosis. The Saethre-Chotzen syndrome, which is defined by loss-of-function mutations in the TWIST gene, is the second most prevalent craniosynostosis. Although much of the genetics and phenotypes in crani...
متن کاملCell mixing at a neural crest-mesoderm boundary and deficient ephrin-Eph signaling in the pathogenesis of craniosynostosis.
Boundaries between cellular compartments often serve as signaling interfaces during embryogenesis. The coronal suture is a major growth center of the skull vault and develops at a boundary between cells derived from neural crest and mesodermal origin, forming the frontal and parietal bones, respectively. Premature fusion of these bones, termed coronal synostosis, is a common human developmental...
متن کاملEphA4 as an effector of Twist1 in the guidance of osteogenic precursor cells during calvarial bone growth and in craniosynostosis.
Heterozygous loss of Twist1 function causes coronal synostosis in both mice and humans. We showed previously that in mice this phenotype is associated with a defect in the neural crest-mesoderm boundary within the coronal suture, as well as with a reduction in the expression of ephrin A2 (Efna2), ephrin A4 (Efna4) and EphA4 in the coronal suture. We also demonstrated that mutations in human EFN...
متن کاملFrontal fusion: collapse of another anthropoid synapomorphy.
We test the hypothesis that the fused interfrontal suture of anthropoids is a uniquely distinguishing feature and a derived characteristic indicative of their monophyletic origin. Our survey of nonanthropoid primates and several archontan families indicates frontal fusion is widespread. It is most variable (fused, open or partially fused) inter- and intra-specifically among strepsirhines. The f...
متن کاملPremature closure of the frontozygomatic suture: unusual frontoorbital dysplasia mimicking unilateral coronal synostosis.
Fig. 1.-Case 1. Skull films. A, Frontal projection. Left orbit is small and round , with normally oriented orbital roof and lesser wing of sphenoid . Lateral wall of left orbit is broad and decreased in height; frontozygomatic suture is obliterated. B, Submentovertical projection. Left frontal area is depressed. Lateral wall of left orbit is short and directed more lateral than normal. There is...
متن کامل